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The pnm Regge residue function is extracted from the recent mm data of Hyams et al. and Durusoy
et al., for -1.0<t<0.1 GeV?, with uncertainties of the order of 15% near ¢t =0. Comparison is
made with an earlier result based on the data of Carroll et al. Finally, a discussion is given of the

content of a sum rule used in the analysis.

1. INTRODUCTION AND SUMMARY

In a recent article! (henceforth called T1), a
rigorous sum rule was derived and applied to the
7w data of Carroll et al.? to yield the pmm Regge
residue function for —-32p2<¢<4u? (where u de-
notes the pion mass). The data were limited in
energy, however, to M,;,<1.48 GeV, and were
also subject to appreciable uncertainties. It is
therefore desirable to apply a similar analysis to
the very recent data of Hyams et al.® and Durusoy
et al.,* which extend up to M,,=1.9 GeV. Ido so
here, and again find strong evidence for Regge
behavior of the mm charge-exchange amplitude
above 1 GeV. The pn7 residue function is ex-
tracted, with uncertainties of the order of 15%
near t=0. Again a zero is found in the residue,
the present position being f,=-0.42 GeV2. The

analysis proceeds as follows.
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II. SUM RULE

My notation and conventions will be those of T1.
In brief, I denote the 77 elastic amplitude with
isospin I in the s (direct) channel by A’(s, f), and
the amplitude with isospin / in the ¢ channel by
T!(s, ). According to standard assumptions of
analyticity and crossing symmetry, the A’ and
T! are related by

2

TI(s,t)= D, Copr A (s, 1),

I'=o

where C =C™! denotes the s-f crossing matrix.
The elements we shall need here are C,; =3, 3,
and -2 for =0, 1, and 2, respectively.

By equating fixed-s and fixed-¢ dispersion rela-
tions for A'(s, t), the following sum rule was de-
rived in T1:

[ImTl(s’, §)—=ImT (s’, t) +

J

where u is to be regarded as a dependent variable
defined implicitly by

pz (8" =s)(s’ ~u)

S+t+u=4p2,

Equation (1) is valid for real s (+i€) and real ¢
(+i€) when —32u2<s<4p? and, simultaneously,
-32uBst<4pu2,

I make the standard Regge assumption that for
large, positive s

Yo (t) =fTYs, t; t;A) [f(s, t; S;A)'yp (S)+h(s,t)+P JA ds
ap?

where

o = (s'/5)em
f(S,t’x,A)—Pj; ds m’

(28’ +5 —4p2)ImA'(s’, s)

(s'+2s -

ImAl(S’,S)] =0, 1)

4p?)(s’ - 1)

T

ImT(s, ) =v,(£)(s/5)% ¥, @)

where 7, is related by a well-known factor to the
residue of the p pole in the J plane, and @, denotes
the p trajectory. I shall use §=1 GeV?, which
defines the scale of v,. As in T1, I assume that

@, (t)=0.50 +0.90(¢/3). (3)
Equations (1) and (2) imply that
, ImT(s’,s) —=ImT(s’, ¢)
GEEem e E @

h(s,t)=(t -s)P ) ds’

4p2

11

(s" =s)(s" = t)(s' —u)(s’ +2s —4pu?)?
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and A may take on any positive value large enough
for Eq. (2) to hold for T'(s’, s) and T'(s’, t) when
s’2A. Since Eq. (2) can hold only for 6<90°, the
minimum suitable value for A must satisfy the
inequalities

A=4p2%-2s,
A=4p2%-2t,

The virtue of Eq. (4) is that if ¥, is known for
any single value of its argument, this value of the
argument can be substituted for s on the right-hand
side of Eq. (4), and then v,(t) can be computed
over the interval —32u2<t¢<4u? from a knowledge
of ImT* between threshold and A, together with
knowledge of the rapidly convergent integral k(s,t).
[In effect, the sum rule (1) fixes the derivative
of v,, and a knowledge of the integration constant
yields 'yp(t).]

III. ANALYSIS OF DATA FOR ImT!

I have assumed that T'(s, t) is given by the S, P,
D, and F waves of Hyams et al.® (for I,=0 and 1)
and those of Durusoy ef al.* (for I =2), over the
energy range of their data. The result for
ImT'(s,t) is presented in Fig. 1 as a function of
s, for six different values of ¢{. Noting the different
vertical scales in Fig. 1, we see that ImT" dis-
plays a very definite zero near t=-0.4 GeV?, 1
interpret this to mean that y,(f) vanishes near
—-0.4 GeV2.

We can extract v, (¢) directly from the data by
taking an average

7o) =5, ~s, 0] [

Sq(t)

ds(s/3)" %) ImT* (s, t).

()

The lower limit of integration S, must depend on
¢t because Eq. (2) can hold only for 6<90° i.e.,
only when s=(4u? -2t). In T1, I took s,(t)to be the
greater of 1.0 GeV? and (42 — 2t). The data lie in
the resonance region, however, where Regge theo-
ry can hold only in the sense of local averages.
In this work, I therefore choose s, and s, to lie
midway between resonant values of s, the relevant
ones being $,=0.59 GeV?, s;=1.61 GeV?, s,=2.84
GeV?, and s(f, rec.)=4.0 GeV?, where the latter
refers to the presumed J =4 recurrence of the f,
resonance.

It is convenient to define
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When s, >(4u2% - 2¢), Tuse s,=s,. When s,
<(4p?-2¢), Iuse S,=5,. In both cases, Iuse

S, =S,. The resulting value for ¥,(¢) is shown in
Fig. 2(a). In principle, ¥,(t) is discontinuous at
t=-0.51 GeV?, where s, changes from s, to s,.

In practice, however, the discontinuity is not visi-
ble on the scale of Fig. 2. From this result for
75, I conclude that y, vanishes at

t,=—0.42 GeV?. ®)

I have set s =¢, on the right-hand side of Eq. (4),
and computed v, (¢) for —32u®<i<4u?, for a range
of A over the interval s,()<A<s,. As in T1, yp(t)
is quite insensitive (~10% variations) to these
changes in A. The result for v,(t), averaged over
A, is shown in Fig. 2(a). Again the discontinuity
at t =-0.51 GeV? (due to the change in s, there) is
not visible on the scale of the figure.

Observe that the results of Egs. (4) and (5) are
indistinguishable on the scale of Fig. 2, except
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FIG. 1. Dotted curves depict ImT!(s, ¢) implied by
S, P, D, and F waves of Hyams et al. (for I ¢ =0 and 1)
and Durusoy et al. (for I =2). Dashed curves depict
Im7! implied by Eqgs. (2), (3), and (7). For t=-0.6
GeV?, vertical bars denote energies above which 6 =90°,
hence energies above which dotted and dashed curves
are expected to agree.
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near the end points of the interval where Eq. (4)
is valid. This very close agreement provides
strong support for my working hypothesis that
Eq. (2) is valid, in the sense of local averages,
for s>1 GeV2.

For the sake of future applications, I note that
?p (¢) is given within +0.01 over the interval -1.0
<t<0.1 GeV? by

7,(t)=0.67+1.78(t/5)
+0.41(t/3) =0.17(/5). (7
Equation (7) represents my preferred result for
Y, in this work, since it agrees with the sum rule

for —-32u2<t<4p? but is valid over the wider range
of ¢ cited above.

IV. ANALYSIS OF ReT"

As a further test of Regge behavior, I also ana-
lyze ReT'. It is convenient to express the Regge
prediction for ReT" in a form analogous to Eq. (2),
i.e.,

ReT'(s, 1) =B, (t)(s/5)% "), ®)
where Regge theory implies that
_[1=cosma,(t)
Bo(6) —[ sinma,,(t) }Y"(t)' ®)

In Fig. 2(b), I present the result for B, obtained
from Eq. (91, using Eq. (7) for v,. I also present
results for g, defined by

Bo(@)=ls, -5, [ K

Sq(t)

ds(s /S) e ReT'(s, 1).

(10)

I find that 'Bp depends appreciably on whether I
include the data above 1.5 GeV. The agreement
between B, and Eq. (9) is fairly good when I eval-
uate B, over the interval s, <s<s,, but is less
good near ¢ =0 when I use the interval s,<s<s,,
The reason may be that for s >s, the »eal parts
of partial waves with />4 make significant con-
tributions to ReT", which have been neglected
here. One expects on quite general grounds that
the real parts of high-order partial waves will
become appreciable at lower energies than the
imaginary parts, and the expected J =4 recurrence
of the f, resonance should make ImA“° large near
M, =2 GeV. Thus it would seem unwise to ne-
glect Re A° in the g region and above, and per-
haps Re A2,

It is worth remarking that resonances can build
up a Regge-behaved ImT"' at fairly low energies,
whereas unitarity impedes an early onset of Regge
behavior for ReT!. In particular, the local aver-
age of Re A" vanishes in the neighborhood of an
elastic resonance, so the burden of Regge behavior

for ReT" falls on the nonresonant amplitude A% at
low energies. Unitarity places a bound on the real
part of each partial wave, however, and the cen-
trifugal barrier suppresses high-order partial
waves at low energies. This combination of factors
leads one to expect Regge behavior to set in at a
somewhat higher energy for ReT" than for ImT".
(In the single-term Veneziano model for = scat-
tering, both ImT* and ReT! have Regge behavior
above 1 GeV but the latter requires ReA®? to ex-
ceed the unitarity bound of —3, reaching -0.8 be-
tween 1.0 and 1.5 GeV.) In light of the preceding
remarks, I regérd the fairly good agreement be-
tween solid curve and open circles in Fig. 2(b) as
further support for my hypothesis that Eq. (2) is
valid above 1 GeV.,
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FIG. 2. (a) Open circles depict 7, defined by Eq. (5).
Solid curve displays Yp computed from Eq. (4). Crosses
depict result of Eq. (4) in forbidden region ¢ < — 32 u2.

(b) Solid curve displgys B, implied by Egs. (7) and (9).
Open circles depict B, defined by Eq. (10), with s, =s;
and s, =s, (the curve terminates where 4u? —2¢ =s,, for
reasons discussed in text). Closed circles depict Ep with
Sq =Sy and Sy =s,.
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V. UNCERTAINTIES IN v_ (¢)

The uncertainties in v, () are of two kinds:
statistical and systematic. The statistical uncer-
tainties are quite small, as may be seen in the
following way.

The quantities extracted directly from the data
[if one assumes Eq. (3) for a,(t)] are 7,(¢) and
B,(t). For any single pair of values for s and ¢,
the statistical (experimental) uncertainty in T(s,t)
is appreciable. Equation (5), however, expresses
7,(t) as an integral of ImT'(s, t) over a wide range
of s. If data at N different values for s are in-
cluded in the integral, then the resulting statistical
uncertainty in ¥, (f) is roughly proportional to
N-'/2_ ImT! is primarily determined by ImA° and
ImA', and Hyams et al. report phase shifts and
inelasticities at 37 different values for s between
s, and s,. Hence the statistical uncertainty in
7,(t) is only about § of that in any single value
for ImT*(s,t). This makes the stafistical uncer-
tainty in 7, (t) extremely small (Ref. 3 is a fairly
high-statistics experiment). Similar remarks
apply to the v, of Eq. (4).

The primary uncertainty in y, (¢) is systematic,
and therefore difficult to estimate with precision.
Apart from possible systematic errors in the
data, I have assumed that Im7* has Regge behavior
above 1 GeV. It is conceivable that the apparent
consistency between this assumption and the data
is misleading, and that Im7" simply is not domi-
nated by p exchange anywhere below 2 GeV. If
this were so, thenmy result fory, would needbear
no resemblance to the pmm Regge residue function.

Although I have taken my preferred result for v,
directly from the data via Eq. (5), Eq. (4) is still
quite useful, because it depends s¢rongly on the
assumption that ImT* has Regge behavior for all
§>A. It is the extreme consistency between the
results of Eqs. (4) and (5), as shown in Fig. 2(a),
which gives me confidence that Im7? has Regge
behavior above 1 GeV.

If I took the maximum discrepancy between the
two curves in Fig. 2(a) as a measure of the un-
certainty, then I would say that y,(¢) is known
within £0.05 for -0.6 <¢t<0.1 GeV2. This estimate
of uncertainty would not be entirely reliable,
however, and I prefer to make the more conserva-
tive statement that if Eq. (3) is correct then v, (t)
is probably given within +0.10 by Eq. (7). This
amounts to an uncertainty of +15% near ¢=0.

The value obtained for y, depends of course on
the value assumed for @,. If I had assumed, for
example, that

@,(t)=0.60 +1.00(¢/3), 11)

then I would have obtained

7,(£)=0.62 +1.60(#/35)+0.23(t/5)? - 0.22(¢/3)°.
(12)

It is scarcely possible to tell from the present data
whether Eq. (11) for o, is really better or worse
than Eq. (3), because Egqs. (11) and (12) lead to the
same ImT"! as Egs. (3) and (7), within an average
discrepancy of only +4% for s, <s <s,, -1.0 <¢
<0.1 GeV2 The discrepancy is greater (+7%) near
t=0, but this is a region where the experimental
ImT"! oscillates with a large amplitude as s varies
(see Fig. 1). It is difficult to determine «,(0)

from an interval of s containing only two oscilla-
tions (f, and g). For any preferred choice of ozp(t),
one may obtain the corresponding vy, by assuming

a cubic form for )/p(t), with coefficients to be deter-
mined from a least-squares fit to the ImT*(s, ¢) im-
plied by Egs. (3) and (7).

V1. THE DATA OF CARROLL et al.

The results (6) and (7) for v, are close to those
obtained in T1 from the data of Carroll ef al.?
However, the position of ¢, has increased by 0.1
GeV?, and y,(0) has decreased by 0.15.

Both of the aforementioned changes are due to
a discrepancy in the I, =2 D-wave phase shift 82,
More specifically, Carroll ef al. reported a 62 of
-20° in the f, region. This value is very much
larger than that reported by Durusoy et al.,* whose
work confirms the result of many earlier authors?®
that -5°<62<0 for M,,<1.5 GeV. A relatively
large value for 0% affects T' appreciably, because
|C,l=3IC,l, while of course (21+1)=5. A simple
analysis reveals that this difference in the value
used for 82 is largely responsible for the slight
differences between my present results for v,
and those reported in T1. Since the smaller value
for 6Z used here has been confirmed by many
authors,® the Y, Presented here supersedes that
reported in T1. [I remark also that the agreement
between the results of Eqs. (4) and (5) is better
here than in T1.]

VII. FURTHER CONTENT OF SUM RULE

If one interchanges s with ¢ in Eqs. (1) and (4),
one obtains superficially independent equations.
By using these new equations, one can eliminate
¥,(s) from the right-hand side of Eq. (4), with the
result
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Yo =[S, 555 MF(s, 66 0) = f(s, 8585 N f(E, 558 0)] 7

A
X%f(t,S;S;A)[h(S,tHP das’

ap2

ImT'(s’,s) = ImT'(s’, t)}
" -5)(" —u)

A
+f(S,t;S;A)_':h(t,S)+P ds

4u2

The right-hand side of Eq. (13) is completely
determined by integrals over absorptive parts
(together with the known function f). If one com-
putes v, (¢) from Eq. (13), however, one finds the
result to be extrvemely sensitive to the f, and g
resonance parameters. Hence it is difficult to
obtain a reliable result for 7, in this way.

The left-hand side of Eq. (13) is manifestly in-
dependent of s, so the right-hand side must be in-

, ImT*(s’, t) = ImT*(s’, s)
"~ —) ]} (13)

r

dependent of the value chosen for s. Using the
experimental values for p resonance parameters,
however, I find that the right-hand side depends
strongly on s, unless I use values for the f, and g
parameters very near the experimental ones. Thus
Eq. (13) seems to imply an interesting relation be-
tween the p, f,, and g resonance parameters. This
possibility may merit further study.
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